Tensile properties and damage evolution in vascular 3D woven glass/epoxy composites
نویسندگان
چکیده
Vascularization enables multifunctional composites capable of self-healing, thermal regulation, electrical and magnetic modulation, and damage sensing. In this study, the effect of vascular channels on the in-plane tensile properties and damage progression of three-dimensional orthogonally woven textile composites is examined. Vascular channels are manufactured by Vaporization of Sacrificial Components (VaSC). Sacrificial fibers composed of poly(lactic acid) treated with tin(II) oxalate catalyst are integrated into 3D woven glass fiber preforms. Composites with straight channel and undulating wave-shaped channel architectures are created and tested in both longitudinal and transverse orientations. Damage evolution is monitored by acoustic emission and optical microscopy. Vascular channels have minimal effect on tensile behavior when fiber alignment is unaltered, while reductions in strength and modulus and increased crack density occur when channels distort the reinforcement fiber architecture. 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
An experimental investigation of novel hybrid epoxy/glass fibers nanocomposite reinforced with nanoclay with enhanced properties for low velocity impact test
The application of nanoparticles in order to enhance the composites properties has been recently attracted many researchers' attentions. To increase the mechanical and physical properties of the composites, the nanoparticles have no significant effect on the weight and nanostructure of composites. One of the well-known nanoparticles is the Nanoclay (NC) that have been widely used in industries ...
متن کاملTransverse Crack Detection in 3D Angle Interlock Glass Fibre Composites Using Acoustic Emission
In addition to manufacturing cost and production rates, damage resistance has become a major issue for the composites industry. Three-dimensional (3D) woven composites have superior through-thickness properties compared to two-dimensional (2D) laminates, for example, improved impact damage resistance, high interlaminar fracture toughness and reduced notch sensitivity. The performance of 3D wove...
متن کاملINTRAPLY HYBRID COMPOSITES BASED ON BASALT AND NYLON WOVEN FABRICS: TENSILE AND COMPRESSIVE PROPERTIES
In this study, the tensile and compressive behaviors of pure and hybrid composite laminates reinforced by basalt–nylon bi-woven intra-ply fabrics were experimentally investigated. Epoxy resin was used as the matrix material. The purpose of using this hybrid composite is to obtain superior characteristics by using the good strength property of basalt fiber with the excellent toughness of ny...
متن کاملExperimental Investigation and Analysis a Mechanical Properties of Hybrid Polymer Composite Plates
The hybrids composite has emerged and have the potential reinforcement material for composites and thus gain attraction by many researchers. This is mainly due to their applicable benefits have they offer low density, low cost, renewable, biodegradability and environmentally harmless and also comparable mechanical properties with synthetic fiber composites. In the project natural fiber and glas...
متن کاملInfluence of Circular and Square Cut-outs on Fiber Glass/Epoxy Composite Laminate under Tensile Loading
Use of composites for a range of structural application in aircrafts, space-crafts, automobiles, etc., has widely spread in the last few years. Other than weight reduction, cut-outs provide pathways to link different aircraft parts. In this paper, an experimental investigation was conducted to study the effect of a cut-out on the tensile strength of the fiber glass/ epoxy composite plate. Geome...
متن کامل